Journal of Organometallic Chemistry, 393 (1990) 201-204
Elsevier Sequoia S.A., Lausanne
JOM 21005

Di-n-butyltin(IV) di-o-bromobenzoate, a weakly-bridged dimer

Seik Weng Ng ${ }^{\boldsymbol{a}}$, V.G. Kumar Das ${ }^{b \star}$
${ }^{a}$ Institute of Advanced Studies and ${ }^{b}$ Department of Chemistry, University of Malaya, 59100 Kuala Lumpur (Malaysia)
Wai-Hing Yip, Ru-Ji Wang and Thomas C.W. Mak *
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong) (Received February 28th, 1990)

Abstract

The six-coordinated tin in di-n-butyltin di-o-bromobenzoate has a skewtrapezoidal bipyramidal geometry with a $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle of $140.5(3)^{\circ}$. The molecules are packed in the unit cell as weakly-bridged dimers ($\mathbf{S n} \cdots$ O 3.451(5) Å).

Introduction

Diorganotin dicarboxylates $\left[\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)_{2}\right]$ have been generally assigned carboxylate-bridged structures on the basis of their spectroscopic characteristics, but there has yet been no crystallographic confirmation of this, and the few esters studied in fact adopt chelated skew-trapezoidal bipyramidal structures [1]. Among the related $\mathrm{R}_{3} \mathrm{SnO}_{2} \mathrm{CR}^{\prime}$ esters, the $\mathrm{R}=$ alkyl compounds are polymeric chains [2] whereas the $R=R^{\prime}=$ aryl derivatives are typically tetrahedral monomers [3], although an exception to this is provided by triphenyltin o-chlorobenzoate [4]. Ortho-halo substituted triphenyltin benzoates are also polymeric species, as deduced from tin-119m Mössbauer quadrupole splittings [5]. We thought it likely that ortho-halo-substituted di-n-butyltin dibenzoates would also have a polymeric structure, and a study on di-n-butyltin di-o-bromobenzoate was undertaken to examine this possibility.

Experimental

Di-n-butyltin oxide ($2.5 \mathrm{~g}, 10 \mathrm{mmol}$) and o-bromobenzoic acid ($4.0 \mathrm{~g}, 20 \mathrm{mmol}$) were melted together in a few drops of toluene to give the crude ester. Colorless crystals of di-n-butyltin di-o-bromobenzoate, m.p. $78^{\circ} \mathrm{C}$, were obtained by the slow evaporation of a solution in hexane. Anal. Found: $\mathrm{C}, 41.73 ; \mathrm{H} 3.94 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{Sn}$

Table 1
Atomic coordinates ($\times 10^{5}$ for Sn and $\mathrm{Br} ; \times 10^{4}$ for other atoms) and equivalent isotropic temperature factors ${ }^{a}\left(\AA^{2} \times 10^{4}\right)$

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }}$
$\mathrm{Sn}(1)$	61608(4)	41241(6)	10109(2)	546(2)
Br(1)	16692(6)	44391(10)	-1187(4)	794(3)
Br(2)	75158(8)	14219(12)	29885(5)	1036(4)
O(1)	4795(3)	3397(5)	1360(2)	660(8)
O(2)	4094(3)	4262(5)	437(2)	668(8)
$O(3)$	7010(3)	3448(6)	1894(2)	$719(8)$
$\mathrm{O}(4)$	8304(4)	4183(6)	1423(2)	780 (8)
C(1)	3961(5)	3672(7)	924(3)	526(8)
C(2)	2863(5)	3211(6)	1045(3)	495(8)
C(3)	1843(5)	3480(7)	664(3)	$56008)$
C(4)	873(5)	3040 (8)	835(3)	704(8)
C(5)	898(6)	2288(8)	1379(4)	791(8)
C(6)	1885(6)	2005(8)	1766(3)	756(8)
C(7)	2854(6)	2483(7)	1593(3)	651(8)
C(8)	8037(5)	3705(7)	1893(3)	579(8)
C(9)	8883(5)	3482(7)	2473(3)	555(8)
C(10)	8753(5)	2604(7)	2973(3)	651(8)
C(11)	9622(6)	2500(8)	3497(4)	846(8)
C(12)	10570(6)	3253(8)	3517(4)	$909(8)$
C(13)	10700(6)	4140(8)	3022(4)	$900(8)$
C(14)	9859(5)	4255(8)	2506(3)	707(8)
C(15)	6188(5)	6432(7)	1107(3)	687(8)
C(16)	5467(7)	7049(7)	1508(4)	836(8)
C(17)	5627(8)	8714(8)	1613(4)	1096(9)
C(18)	4931(8)	9398(9)	1955(5)	1243(9)
C(19)	6343(6)	2476(8)	360(3)	764(8)
C(20)	7238(8)	1384(9)	543(5)	1238(9)
C(21)	$7290(8)$	217(9)	25(5)	1274(9)
C(22)	7890(9)	818(10)	-383(6)	1801(9)

${ }^{a} U_{\mathrm{cq}}$ defined as one third of the trace of the orthogonalized U tensor.
calcd.: C 41.74, H 4.11\%. Carbon-13 NMR in CDCl_{3} [δ in ppm (${ }^{n} J$ in Hz)] for $\left(\mathrm{H}_{3} \mathrm{C}^{4}-\mathrm{H}_{2} \mathrm{C}^{3}-\mathrm{H}_{2} \mathrm{C}^{2}-\mathrm{H}_{2} \mathrm{C}^{1}\right)_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{Br}\right)_{2}: C^{1} 25.6$ (570.6), $C^{2} 26.6$ (38.2), $C^{3} 26.2$ (94.0), $C^{4} 13.4 \mathrm{ppm}(-\mathrm{Hz}) ; \mathrm{CO}_{2} 175.6 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{H}_{4} 121.9,127.0,132.0$, 132.2, 132.5, 134.2 ppm . A crystal measuring $0.34 \times 0.36 \times 0.44 \mathrm{~mm}$ was used for the diffraction analysis, and data were collected on a Nicolet $R 3 m / V$ diffractometer up to $2 \theta 55^{\circ}$. Direct phase determination using $2981\left|F_{\mathrm{o}}\right| \geq 6 \sigma\left|F_{\mathrm{o}}\right|$ out of 5417 unique $\mathrm{Mo}-K_{\alpha}$ reflections yielded most of the non- H atoms and the others were derived from successive difference Fourier syntheses. The non-H atoms were subjected to anisotropic refinement, and H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}$ bonds fixed at $0.96 \AA$) and allowed to ride on their respective parent C atoms. Refinement converged at $R_{\mathrm{F}}=0.047, R_{\mathrm{G}}=0.059\left(w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0010\left|F_{\mathrm{o}}\right|^{2}\right]^{-1}\right)$; the max $/ \mathrm{min}$ transmission factors are 0.167 and 0.103 . Computations were performed by using the shelxtl-plus program package [6] on a DEC MicroVAX-II computer. The atomic coordinates are listed in Table 1.

Crystal data $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{Sn}$, monoclinic, $P 2_{1} / c$, a 12.343(2), b 9.098(2), c $21.495(2) \AA, \beta 101.7(1)^{\circ} ; V 2407.6(7) \AA^{3} ; D_{\text {calcd }} 1.746 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu 43.74 \mathrm{~cm}^{-1}$ for $Z=4$.

Fig. 1. Structure of di-n-butyltin di-o-bromobenzoate. Selected bond distances and angles: $\mathrm{Sn}(1)-\mathrm{O}(1)$ $2.095(5), \operatorname{Sn}(1)-\mathrm{O}(2) 2.608(5), \mathrm{Sn}(1)-\mathrm{O}(3) 2.097(4), \mathrm{Sn}(1)-\mathrm{O}(4) 2.617(5), \mathrm{Sn}(1) \cdots \mathrm{O}(2 \mathrm{a}) 3.451(5), \mathrm{Sn}(1)-$ $\mathrm{C}(15) 2.110(7), \mathrm{Sn}(1)-\mathrm{O}(19) \quad 2.112(7) \AA ; \mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2) 53.8(2), \quad \mathrm{O}(2)-\mathrm{Sn}(1) \cdots \mathrm{O}(2 \mathrm{a}) \quad 68.9(2)$, $\mathrm{O}(2 \mathrm{a}) \cdots \mathrm{Sn}-\mathrm{O}(4) \quad 108.2(2), \quad \mathrm{O}(4)-\mathrm{Sn}(1)-\mathrm{O}(3) \quad 53.6(2), \quad \mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{O}(1) \quad 81.9(2), \quad \mathrm{C}(15)-\mathrm{Sn}-\mathrm{C}(19)$ $140.5(3)^{\circ}$.

Results and discussion

The molecular structure of di-n-butyltin di-o-bromobenzoate is depicted in Fig. 1, which also shows the symmetry-related molecule. The tin atom is six-coordinate $\left[\mathrm{Sn}-\mathrm{O}_{\text {short }} 2.095(5), 2.097(4) \AA ; \mathrm{Sn}-\mathrm{O}_{\text {long }} 2.608(5), 2.617(5) \AA\right.$, with a skewtrapezoidal bipyramidal polyhedron. Two tin atoms are so close that the distance between $\mathrm{Sn}(1)$ and the $\mathrm{O}(2)$ atom of the other (centrosymmetrically-related) molecule is only $3.451(5) \AA$, which suggests that there is a very weak interaction between them. The dimeric structure contrasts with the monomeric structure of di-n-butyltin di-p-bromobenzoate [1], for which no intermolecular contacts of $<4 \AA$ were found.

The literature contains two unambiguous examples of formally seven-coordinate tin in diorganotin dicarboxylate adducts, namely di-n-butyltin bisphenylacetate hydrate (C-Sn-C $196.9(5)^{\circ}$ and $\mathrm{Sn}-\mathrm{O}_{\text {water }} 2.342(8) \AA$) [7] and the ionic dimethyltin diacetate-acetate ($\mathrm{C}-\mathrm{Sn}-\mathrm{C} 165.8(6)^{\circ}$ and $\mathrm{Sn}-\mathrm{O}_{\text {acetate }}$ 2.113(9) \AA) [8]. For the title compound, the interpretation of the $3.451(5) \AA$ contact distance as a bond would imply a distorted pentagonal bipyramid geometry: the apical $\mathrm{C}(15)-\mathrm{Sn}-\mathrm{C}(19)$ angle is $140.5(3)^{\circ}$, and the sum of angles in the pentagonal plane is $360.0(10)^{\circ}$.

The $132^{\circ} \mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle predicted [9] from the solution one-bond ${ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}$ coupling constant of 570.6 Hz is much smaller than the experimental solid-state angle of $140.5(3)^{\circ}$ in contrast with the much better agreement between the solution $\left(133^{\circ}\right)$ and solid-state ($130.6(2)^{\circ}$) values for the monomeric di-p-bromobenzoate [1]. This result indicates that dissociation of the "dimer" in solution is accompanied by some folding of the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ skeleton.

Acknowledgements

We thank Dr. Ma Pui Han (Grant No. 183902000), the Malaysian National Science Council for R \& D (Grant No. 2-07-04-06) and the University of Malaya
(Grant. No. PJP286/89), for generous support of this work, and the Kuala Lumpur Rotary Research Foundation for a travel grant (to S.W.N.).

References

1 S.W. Ng, V.G. Kumar Das, B.W. Skelton and A.H. White, J. Organomet. Chem., 377 (1989) 221.
2 S.W. Ng, Chen Wei and V.G. Kumar Das, J. Organomet. Chem., 345 (1988) 59.
3 S.W. Ng. V.G. Kumar Das, F. van Meurs, J.D. Schagen and L.H. Straver, Acta Crystallogr. C, 45 (1989) 568.

4 R.R. Holmes, R.O. Day, V. Chandrasekhar, J.F. Vollano and J.M. Holmes, Inorg. Chem., 25 (1986) 2490.

5 K.C. Molloy, S.J. Blunden, S.J. and R. Hill, R., J. Chem. Soc., Dalton Trans., (1988) 1259.
6 G.M. Sheldrick, in Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases, edited by G.M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, New York, 1985, pp. 175-189.
7 S.W. Ng, Chen Wei, A. Zainudin, V.G. Kumar Das, W.-H. Yip, R.-J. Wang and T.C.W. Mak, J. Crystallogr. Spectrosc. Res., in press.
8 T.P. Lockhart, J.C. Calabrese and F. Davidson, Organometallics, 6 (1987) 2479.
9 J. Holeček and A. Lyčka, Inorg. Chim. Acta, 118 (1986) L15.

