Journal of Organometallic Chemistry, 393 (1990) 201–204 Elsevier Sequoia S.A., Lausanne JOM 21005

Di-n-butyltin(IV) di-o-bromobenzoate, a weakly-bridged dimer

Seik Weng Ng ", V.G. Kumar Das b*

^a Institute of Advanced Studies and ^b Department of Chemistry, University of Malaya, 59100 Kuala Lumpur (Malaysia)

Wai-Hing Yip, Ru-Ji Wang and Thomas C.W. Mak *

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong) (Received February 28th, 1990)

Abstract

The six-coordinated tin in di-n-butyltin di-o-bromobenzoate has a skew-trapezoidal bipyramidal geometry with a C-Sn-C angle of 140.5(3)°. The molecules are packed in the unit cell as weakly-bridged dimers (Sn \cdots O 3.451(5) Å).

Introduction

Diorganotin dicarboxylates $[R_2Sn(O_2CR')_2]$ have been generally assigned carboxylate-bridged structures on the basis of their spectroscopic characteristics, but there has yet been no crystallographic confirmation of this, and the few esters studied in fact adopt chelated skew-trapezoidal bipyramidal structures [1]. Among the related R_3SnO_2CR' esters, the R = alkyl compounds are polymeric chains [2] whereas the R = R' = aryl derivatives are typically tetrahedral monomers [3], although an exception to this is provided by triphenyltin *o*-chlorobenzoate [4]. Ortho-halo substituted triphenyltin benzoates are also polymeric species, as deduced from tin-119m Mössbauer quadrupole splittings [5]. We thought it likely that ortho-halo-substituted di-n-butyltin dibenzoates would also have a polymeric structure, and a study on di-n-butyltin di-o-bromobenzoate was undertaken to examine this possibility.

Experimental

Di-n-butyltin oxide (2.5 g, 10 mmol) and o-bromobenzoic acid (4.0 g, 20 mmol) were melted together in a few drops of toluene to give the crude ester. Colorless crystals of di-n-butyltin di-o-bromobenzoate, m.p. 78°C, were obtained by the slow evaporation of a solution in hexane. Anal. Found: C, 41.73; H 3.94. $C_{22}H_{26}Br_2O_4Sn$

Atom	x	у	Z	U _{eq}	
Sn(1)	61608(4)	41241(6)	10109(2)	546(2)	
Br(1)	16692(6)	44391(10)	- 1187(4)	794(3)	
Br(2)	75158(8)	14219(12)	29885(5)	1036(4)	
O(1)	4795(3)	3397(5)	1360(2)	660(8)	
O(2)	4094(3)	4262(5)	437(2)	668(8)	
O(3)	7010(3)	3448(6)	1894(2)	719(8)	
O(4)	8304(4)	4183(6)	1423(2)	780(8)	
C(1)	3961(5)	3672(7)	924(3)	526(8)	
C(2)	2863(5)	3211(6)	1045(3)	495(8)	
C(3)	1843(5)	3480(7)	664(3)	560(8)	
C(4)	873(5)	3040(8)	835(3)	704(8)	
C(5)	898(6)	2288(8)	1379(4)	791(8)	
C(6)	1885(6)	2005(8)	1766(3)	756(8)	
C(7)	2854(6)	2483(7)	1593(3)	651(8)	
C(8)	8037(5)	3705(7)	1893(3)	579(8)	
C(9)	8883(5)	3482(7)	2473(3)	555(8)	
C(10)	8753(5)	2604(7)	2973(3)	651(8)	
C(11)	9622(6)	2500(8)	3497(4)	846(8)	
C(12)	10570(6)	3253(8)	3517(4)	909(8)	
C(13)	10700(6)	4140(8)	3022(4)	900(8)	
C(14)	9859(5)	4255(8)	2506(3)	707(8)	
C(15)	6188(5)	6432(7)	1107(3)	687(8)	
C(16)	5467(7)	7049(7)	1508(4)	836(8)	
C(17)	5627(8)	8714(8)	1613(4)	1096(9)	
C(18)	4931(8)	9398(9)	1955(5)	1243(9)	
C(19)	6343(6)	2476(8)	360(3)	764(8)	
C(20)	7238(8)	1384(9)	543(5)	1238(9)	
C(21)	7290(8)	217(9)	25(5)	1274(9)	
C(22)	7890(9)	818(10)	- 383(6)	1801(9)	

Atomic coordinates (×10⁵ for Sn and Br; ×10⁴ for other atoms) and equivalent isotropic temperature factors ^a (Å²×10⁴)

^a U_{eq} defined as one third of the trace of the orthogonalized U tensor.

calcd.: C 41.74, H 4.11%. Carbon-13 NMR in CDCl₃ [δ in ppm (ⁿJ in Hz)] for (H₃C⁴-H₂C³-H₂C²-H₂C¹)₂Sn(O₂C-C₆H₄-o-Br)₂: C¹ 25.6 (570.6), C² 26.6 (38.2), C³ 26.2 (94.0), C⁴ 13.4 ppm (-Hz); CO₂ 175.6 ppm; C₆H₄ 121.9, 127.0, 132.0, 132.2, 132.5, 134.2 ppm. A crystal measuring $0.34 \times 0.36 \times 0.44$ mm was used for the diffraction analysis, and data were collected on a Nicolet R3m/V diffractometer up to 2θ 55°. Direct phase determination using 2981 $|F_o| \ge 6\sigma |F_o|$ out of 5417 unique Mo- K_{α} reflections yielded most of the non-H atoms and the others were derived from successive difference Fourier syntheses. The non-H atoms were subjected to anisotropic refinement, and H atoms were placed in calculated positions (C-H bonds fixed at 0.96 Å) and allowed to ride on their respective parent C atoms. Refinement converged at $R_F = 0.047$, $R_G = 0.059$ ($w = [\sigma^2(F_o) + 0.0010 |F_o|^2]^{-1}$); the max/min transmission factors are 0.167 and 0.103. Computations were performed by using the SHELXTL-PLUS program package [6] on a DEC MicroVAX-II computer. The atomic coordinates are listed in Table 1.

Crystal data $C_{22}H_{26}Br_2O_4Sn$, monoclinic, $P2_1/c$, a 12.343(2), b 9.098(2), c 21.495(2) Å, β 101.7(1)°; V 2407.6(7) Å³; D_{calcd} 1.746 g cm⁻³; μ 43.74 cm⁻¹ for Z = 4.

Table 1

Fig. 1. Structure of di-n-butyltin di-o-bromobenzoate. Selected bond distances and angles: Sn(1)-O(1) 2.095(5), Sn(1)-O(2) 2.608(5), Sn(1)-O(3) 2.097(4), Sn(1)-O(4) 2.617(5), $Sn(1) \cdots O(2a) 3.451(5)$, Sn(1)-C(15) 2.110(7), Sn(1)-O(19) 2.112(7) Å; O(1)-Sn(1)-O(2) 53.8(2), $O(2)-Sn(1) \cdots O(2a) 68.9(2)$, $O(2a) \cdots Sn-O(4) 108.2(2)$, O(4)-Sn(1)-O(3) 53.6(2), O(3)-Sn(1)-O(1) 81.9(2), $C(15)-Sn-C(19) 140.5(3)^{\circ}$.

Results and discussion

The molecular structure of di-n-butyltin di-o-bromobenzoate is depicted in Fig. 1, which also shows the symmetry-related molecule. The tin atom is six-coordinate $[Sn-O_{short} 2.095(5), 2.097(4) \text{ Å}; Sn-O_{long} 2.608(5), 2.617(5) \text{ Å}]$, with a skew-trapezoidal bipyramidal polyhedron. Two tin atoms are so close that the distance between Sn(1) and the O(2) atom of the other (centrosymmetrically-related) molecule is only 3.451(5) Å, which suggests that there is a very weak interaction between them. The dimeric structure contrasts with the monomeric structure of di-n-butyltin di-p-bromobenzoate [1], for which no intermolecular contacts of < 4 Å were found.

The literature contains two unambiguous examples of formally seven-coordinate tin in diorganotin dicarboxylate adducts, namely di-n-butyltin bisphenylacetate hydrate (C-Sn-C 196.9(5)° and Sn-O_{water} 2.342(8) Å) [7] and the ionic dimethyltin diacetate-acetate (C-Sn-C 165.8(6)° and Sn-O_{acetate} 2.113(9) Å) [8]. For the title compound, the interpretation of the 3.451(5) Å contact distance as a bond would imply a distorted pentagonal bipyramid geometry: the apical C(15)-Sn-C(19) angle is 140.5(3)°, and the sum of angles in the pentagonal plane is 360.0(10)°.

The 132° C-Sn-C angle predicted [9] from the solution one-bond 119 Sn- 13 C coupling constant of 570.6 Hz is much smaller than the experimental solid-state angle of 140.5(3)° in contrast with the much better agreement between the solution (133°) and solid-state (130.6(2)°) values for the monomeric di-*p*-bromobenzoate [1]. This result indicates that dissociation of the "dimer" in solution is accompanied by some folding of the C-Sn-C skeleton.

Acknowledgements

We thank Dr. Ma Pui Han (Grant No. 183902000), the Malaysian National Science Council for R & D (Grant No. 2-07-04-06) and the University of Malaya

(Grant. No. PJP286/89), for generous support of this work, and the Kuala Lumpur Rotary Research Foundation for a travel grant (to S.W.N.).

References

- 1 S.W. Ng, V.G. Kumar Das, B.W. Skelton and A.H. White, J. Organomet. Chem., 377 (1989) 221.
- 2 S.W. Ng, Chen Wei and V.G. Kumar Das, J. Organomet. Chem., 345 (1988) 59.
- 3 S.W. Ng. V.G. Kumar Das, F. van Meurs, J.D. Schagen and L.H. Straver, Acta Crystallogr. C, 45 (1989) 568.
- 4 R.R. Holmes, R.O. Day, V. Chandrasekhar, J.F. Vollano and J.M. Holmes, Inorg. Chem., 25 (1986) 2490.
- 5 K.C. Molloy, S.J. Blunden, S.J. and R. Hill, R., J. Chem. Soc., Dalton Trans., (1988) 1259.
- 6 G.M. Sheldrick, in Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases, edited by G.M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, New York, 1985, pp. 175-189.
- 7 S.W. Ng, Chen Wei, A. Zainudin, V.G. Kumar Das, W.-H. Yip, R.-J. Wang and T.C.W. Mak, J. Crystallogr. Spectrosc. Res., in press.
- 8 T.P. Lockhart, J.C. Calabrese and F. Davidson, Organometallics, 6 (1987) 2479.
- 9 J. Holeček and A. Lyčka, Inorg. Chim. Acta, 118 (1986) L15.